3.5.61 \(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}}{x (d+e x)} \, dx\) [461]

Optimal. Leaf size=394 \[ -\frac {\left (3 c^3 d^6-11 a c^2 d^4 e^2-83 a^2 c d^2 e^4-5 a^3 e^6+2 c d e \left (c d^2-5 a e^2\right ) \left (3 c d^2+a e^2\right ) x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 c d e^2}+\frac {\left (3 c d^2+11 a e^2+6 c d e x\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{24 e}+\frac {\left (3 c^4 d^8-20 a c^3 d^6 e^2+90 a^2 c^2 d^4 e^4+60 a^3 c d^2 e^6-5 a^4 e^8\right ) \tanh ^{-1}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{128 c^{3/2} d^{3/2} e^{5/2}}-a^{5/2} d^{3/2} e^{5/2} \tanh ^{-1}\left (\frac {2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right ) \]

[Out]

1/24*(6*c*d*e*x+11*a*e^2+3*c*d^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/e-a^(5/2)*d^(3/2)*e^(5/2)*arctanh(1/
2*(2*a*d*e+(a*e^2+c*d^2)*x)/a^(1/2)/d^(1/2)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))+1/128*(-5*a^4*e^8
+60*a^3*c*d^2*e^6+90*a^2*c^2*d^4*e^4-20*a*c^3*d^6*e^2+3*c^4*d^8)*arctanh(1/2*(2*c*d*e*x+a*e^2+c*d^2)/c^(1/2)/d
^(1/2)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/c^(3/2)/d^(3/2)/e^(5/2)-1/64*(3*c^3*d^6-11*a*c^2*d^4*e
^2-83*a^2*c*d^2*e^4-5*a^3*e^6+2*c*d*e*(-5*a*e^2+c*d^2)*(a*e^2+3*c*d^2)*x)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1
/2)/c/d/e^2

________________________________________________________________________________________

Rubi [A]
time = 0.28, antiderivative size = 394, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {863, 828, 857, 635, 212, 738} \begin {gather*} -a^{5/2} d^{3/2} e^{5/2} \tanh ^{-1}\left (\frac {x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )-\frac {\left (-5 a^3 e^6-83 a^2 c d^2 e^4-11 a c^2 d^4 e^2+2 c d e x \left (c d^2-5 a e^2\right ) \left (a e^2+3 c d^2\right )+3 c^3 d^6\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{64 c d e^2}+\frac {\left (-5 a^4 e^8+60 a^3 c d^2 e^6+90 a^2 c^2 d^4 e^4-20 a c^3 d^6 e^2+3 c^4 d^8\right ) \tanh ^{-1}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{128 c^{3/2} d^{3/2} e^{5/2}}+\frac {\left (11 a e^2+3 c d^2+6 c d e x\right ) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{24 e} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/(x*(d + e*x)),x]

[Out]

-1/64*((3*c^3*d^6 - 11*a*c^2*d^4*e^2 - 83*a^2*c*d^2*e^4 - 5*a^3*e^6 + 2*c*d*e*(c*d^2 - 5*a*e^2)*(3*c*d^2 + a*e
^2)*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(c*d*e^2) + ((3*c*d^2 + 11*a*e^2 + 6*c*d*e*x)*(a*d*e + (c*
d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(24*e) + ((3*c^4*d^8 - 20*a*c^3*d^6*e^2 + 90*a^2*c^2*d^4*e^4 + 60*a^3*c*d^2
*e^6 - 5*a^4*e^8)*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*
x + c*d*e*x^2])])/(128*c^(3/2)*d^(3/2)*e^(5/2)) - a^(5/2)*d^(3/2)*e^(5/2)*ArcTanh[(2*a*d*e + (c*d^2 + a*e^2)*x
)/(2*Sqrt[a]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 828

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(d + e*x)^(m + 1)*(c*e*f*(m + 2*p + 2) - g*(c*d + 2*c*d*p - b*e*p) + g*c*e*(m + 2*p + 1)*x)*((a + b*x + c*x^
2)^p/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2))), x] - Dist[p/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), Int[(d + e*x)^m*(a
 + b*x + c*x^2)^(p - 1)*Simp[c*e*f*(b*d - 2*a*e)*(m + 2*p + 2) + g*(a*e*(b*e - 2*c*d*m + b*e*m) + b*d*(b*e*p -
 c*d - 2*c*d*p)) + (c*e*f*(2*c*d - b*e)*(m + 2*p + 2) + g*(b^2*e^2*(p + m + 1) - 2*c^2*d^2*(1 + 2*p) - c*e*(b*
d*(m - 2*p) + 2*a*e*(m + 2*p + 1))))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0
] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] ||  !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])
) &&  !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 857

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 863

Int[((x_)^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Int[x^n*(a/d + c*(
x/e))*(a + b*x + c*x^2)^(p - 1), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b
*d*e + a*e^2, 0] &&  !IntegerQ[p] && ( !IntegerQ[n] ||  !IntegerQ[2*p] || IGtQ[n, 2] || (GtQ[p, 0] && NeQ[n, 2
]))

Rubi steps

\begin {align*} \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{x (d+e x)} \, dx &=\int \frac {(a e+c d x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{x} \, dx\\ &=\frac {\left (3 c d^2+11 a e^2+6 c d e x\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{24 e}-\frac {\int \frac {\left (-8 a^2 c d^2 e^3+\frac {1}{2} c d \left (c d^2-5 a e^2\right ) \left (3 c d^2+a e^2\right ) x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x} \, dx}{8 c d e}\\ &=-\frac {\left (3 c^3 d^6-11 a c^2 d^4 e^2-83 a^2 c d^2 e^4-5 a^3 e^6+2 c d e \left (c d^2-5 a e^2\right ) \left (3 c d^2+a e^2\right ) x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 c d e^2}+\frac {\left (3 c d^2+11 a e^2+6 c d e x\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{24 e}+\frac {\int \frac {32 a^3 c^2 d^4 e^5+\frac {1}{4} c d \left (3 c^4 d^8-20 a c^3 d^6 e^2+90 a^2 c^2 d^4 e^4+60 a^3 c d^2 e^6-5 a^4 e^8\right ) x}{x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{32 c^2 d^2 e^2}\\ &=-\frac {\left (3 c^3 d^6-11 a c^2 d^4 e^2-83 a^2 c d^2 e^4-5 a^3 e^6+2 c d e \left (c d^2-5 a e^2\right ) \left (3 c d^2+a e^2\right ) x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 c d e^2}+\frac {\left (3 c d^2+11 a e^2+6 c d e x\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{24 e}+\left (a^3 d^2 e^3\right ) \int \frac {1}{x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx+\frac {\left (3 c^4 d^8-20 a c^3 d^6 e^2+90 a^2 c^2 d^4 e^4+60 a^3 c d^2 e^6-5 a^4 e^8\right ) \int \frac {1}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{128 c d e^2}\\ &=-\frac {\left (3 c^3 d^6-11 a c^2 d^4 e^2-83 a^2 c d^2 e^4-5 a^3 e^6+2 c d e \left (c d^2-5 a e^2\right ) \left (3 c d^2+a e^2\right ) x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 c d e^2}+\frac {\left (3 c d^2+11 a e^2+6 c d e x\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{24 e}-\left (2 a^3 d^2 e^3\right ) \text {Subst}\left (\int \frac {1}{4 a d e-x^2} \, dx,x,\frac {2 a d e-\left (-c d^2-a e^2\right ) x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )+\frac {\left (3 c^4 d^8-20 a c^3 d^6 e^2+90 a^2 c^2 d^4 e^4+60 a^3 c d^2 e^6-5 a^4 e^8\right ) \text {Subst}\left (\int \frac {1}{4 c d e-x^2} \, dx,x,\frac {c d^2+a e^2+2 c d e x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{64 c d e^2}\\ &=-\frac {\left (3 c^3 d^6-11 a c^2 d^4 e^2-83 a^2 c d^2 e^4-5 a^3 e^6+2 c d e \left (c d^2-5 a e^2\right ) \left (3 c d^2+a e^2\right ) x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 c d e^2}+\frac {\left (3 c d^2+11 a e^2+6 c d e x\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{24 e}+\frac {\left (3 c^4 d^8-20 a c^3 d^6 e^2+90 a^2 c^2 d^4 e^4+60 a^3 c d^2 e^6-5 a^4 e^8\right ) \tanh ^{-1}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{128 c^{3/2} d^{3/2} e^{5/2}}-a^{5/2} d^{3/2} e^{5/2} \tanh ^{-1}\left (\frac {2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.02, size = 342, normalized size = 0.87 \begin {gather*} \frac {\sqrt {a e+c d x} \sqrt {d+e x} \left (\sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a e+c d x} \sqrt {d+e x} \left (15 a^3 e^6+a^2 c d e^4 (337 d+118 e x)+a c^2 d^2 e^2 \left (57 d^2+244 d e x+136 e^2 x^2\right )+c^3 \left (-9 d^6+6 d^5 e x+72 d^4 e^2 x^2+48 d^3 e^3 x^3\right )\right )-384 a^{5/2} c^{3/2} d^3 e^5 \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a e+c d x}}{\sqrt {a} \sqrt {e} \sqrt {d+e x}}\right )+3 \left (3 c^4 d^8-20 a c^3 d^6 e^2+90 a^2 c^2 d^4 e^4+60 a^3 c d^2 e^6-5 a^4 e^8\right ) \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {a e+c d x}}{\sqrt {c} \sqrt {d} \sqrt {d+e x}}\right )\right )}{192 c^{3/2} d^{3/2} e^{5/2} \sqrt {(a e+c d x) (d+e x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/(x*(d + e*x)),x]

[Out]

(Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*(Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*(15*a^3*e^6 + a^2*c*
d*e^4*(337*d + 118*e*x) + a*c^2*d^2*e^2*(57*d^2 + 244*d*e*x + 136*e^2*x^2) + c^3*(-9*d^6 + 6*d^5*e*x + 72*d^4*
e^2*x^2 + 48*d^3*e^3*x^3)) - 384*a^(5/2)*c^(3/2)*d^3*e^5*ArcTanh[(Sqrt[d]*Sqrt[a*e + c*d*x])/(Sqrt[a]*Sqrt[e]*
Sqrt[d + e*x])] + 3*(3*c^4*d^8 - 20*a*c^3*d^6*e^2 + 90*a^2*c^2*d^4*e^4 + 60*a^3*c*d^2*e^6 - 5*a^4*e^8)*ArcTanh
[(Sqrt[e]*Sqrt[a*e + c*d*x])/(Sqrt[c]*Sqrt[d]*Sqrt[d + e*x])]))/(192*c^(3/2)*d^(3/2)*e^(5/2)*Sqrt[(a*e + c*d*x
)*(d + e*x)])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(996\) vs. \(2(352)=704\).
time = 0.08, size = 997, normalized size = 2.53

method result size
default \(-\frac {\frac {\left (c d e \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )\right )^{\frac {5}{2}}}{5}+\frac {\left (a \,e^{2}-c \,d^{2}\right ) \left (\frac {\left (2 c d e \left (x +\frac {d}{e}\right )+a \,e^{2}-c \,d^{2}\right ) \left (c d e \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )\right )^{\frac {3}{2}}}{8 c d e}-\frac {3 \left (a \,e^{2}-c \,d^{2}\right )^{2} \left (\frac {\left (2 c d e \left (x +\frac {d}{e}\right )+a \,e^{2}-c \,d^{2}\right ) \sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}}{4 c d e}-\frac {\left (a \,e^{2}-c \,d^{2}\right )^{2} \ln \left (\frac {\frac {a \,e^{2}}{2}-\frac {c \,d^{2}}{2}+c d e \left (x +\frac {d}{e}\right )}{\sqrt {c d e}}+\sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}\right )}{8 c d e \sqrt {c d e}}\right )}{16 c d e}\right )}{2}}{d}+\frac {\frac {\left (a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}\right )^{\frac {5}{2}}}{5}+\frac {\left (a \,e^{2}+c \,d^{2}\right ) \left (\frac {\left (2 c d e x +a \,e^{2}+c \,d^{2}\right ) \left (a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}\right )^{\frac {3}{2}}}{8 c d e}+\frac {3 \left (4 a c \,d^{2} e^{2}-\left (a \,e^{2}+c \,d^{2}\right )^{2}\right ) \left (\frac {\left (2 c d e x +a \,e^{2}+c \,d^{2}\right ) \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}}{4 c d e}+\frac {\left (4 a c \,d^{2} e^{2}-\left (a \,e^{2}+c \,d^{2}\right )^{2}\right ) \ln \left (\frac {\frac {1}{2} a \,e^{2}+\frac {1}{2} c \,d^{2}+c d e x}{\sqrt {c d e}}+\sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{8 c d e \sqrt {c d e}}\right )}{16 c d e}\right )}{2}+a d e \left (\frac {\left (a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}\right )^{\frac {3}{2}}}{3}+\frac {\left (a \,e^{2}+c \,d^{2}\right ) \left (\frac {\left (2 c d e x +a \,e^{2}+c \,d^{2}\right ) \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}}{4 c d e}+\frac {\left (4 a c \,d^{2} e^{2}-\left (a \,e^{2}+c \,d^{2}\right )^{2}\right ) \ln \left (\frac {\frac {1}{2} a \,e^{2}+\frac {1}{2} c \,d^{2}+c d e x}{\sqrt {c d e}}+\sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{8 c d e \sqrt {c d e}}\right )}{2}+a d e \left (\sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}+\frac {\left (a \,e^{2}+c \,d^{2}\right ) \ln \left (\frac {\frac {1}{2} a \,e^{2}+\frac {1}{2} c \,d^{2}+c d e x}{\sqrt {c d e}}+\sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{2 \sqrt {c d e}}-\frac {a d e \ln \left (\frac {2 a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +2 \sqrt {a d e}\, \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}}{x}\right )}{\sqrt {a d e}}\right )\right )}{d}\) \(997\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/x/(e*x+d),x,method=_RETURNVERBOSE)

[Out]

-1/d*(1/5*(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(5/2)+1/2*(a*e^2-c*d^2)*(1/8*(2*c*d*e*(x+d/e)+a*e^2-c*d^2)/c
/d/e*(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(3/2)-3/16*(a*e^2-c*d^2)^2/c/d/e*(1/4*(2*c*d*e*(x+d/e)+a*e^2-c*d^
2)/c/d/e*(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2)-1/8*(a*e^2-c*d^2)^2/c/d/e*ln((1/2*a*e^2-1/2*c*d^2+c*d*e
*(x+d/e))/(c*d*e)^(1/2)+(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2))/(c*d*e)^(1/2))))+1/d*(1/5*(a*d*e+(a*e^2
+c*d^2)*x+c*d*e*x^2)^(5/2)+1/2*(a*e^2+c*d^2)*(1/8*(2*c*d*e*x+a*e^2+c*d^2)/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x
^2)^(3/2)+3/16*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/c/d/e*(1/4*(2*c*d*e*x+a*e^2+c*d^2)/c/d/e*(a*d*e+(a*e^2+c*d^2)*x
+c*d*e*x^2)^(1/2)+1/8*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/c/d/e*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*
d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2)))+a*d*e*(1/3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+1/2*(
a*e^2+c*d^2)*(1/4*(2*c*d*e*x+a*e^2+c*d^2)/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/8*(4*a*c*d^2*e^2-(a*
e^2+c*d^2)^2)/c/d/e*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c
*d*e)^(1/2))+a*d*e*((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/2*(a*e^2+c*d^2)*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)
/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2)-a*d*e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c
*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/x))))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/x/(e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(c*d^2-%e^2*a>0)', see `assume?
` for more d

________________________________________________________________________________________

Fricas [A]
time = 54.81, size = 1817, normalized size = 4.61 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/x/(e*x+d),x, algorithm="fricas")

[Out]

[1/768*(384*sqrt(a*d)*a^2*c^2*d^3*e^(11/2)*log((c^2*d^4*x^2 + 8*a*c*d^3*x*e + a^2*x^2*e^4 + 8*a^2*d*x*e^3 - 4*
(c*d^2*x + a*x*e^2 + 2*a*d*e)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt(a*d)*e^(1/2) + 2*(3*a*c*d^2*x^2
 + 4*a^2*d^2)*e^2)/x^2) - 3*(3*c^4*d^8 - 20*a*c^3*d^6*e^2 + 90*a^2*c^2*d^4*e^4 + 60*a^3*c*d^2*e^6 - 5*a^4*e^8)
*sqrt(c*d)*e^(1/2)*log(8*c^2*d^3*x*e + c^2*d^4 + 8*a*c*d*x*e^3 + a^2*e^4 - 4*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2
 + a*d)*e)*(2*c*d*x*e + c*d^2 + a*e^2)*sqrt(c*d)*e^(1/2) + 2*(4*c^2*d^2*x^2 + 3*a*c*d^2)*e^2) + 4*(6*c^4*d^6*x
*e^2 - 9*c^4*d^7*e + 118*a^2*c^2*d^2*x*e^6 + 15*a^3*c*d*e^7 + (136*a*c^3*d^3*x^2 + 337*a^2*c^2*d^3)*e^5 + 4*(1
2*c^4*d^4*x^3 + 61*a*c^3*d^4*x)*e^4 + 3*(24*c^4*d^5*x^2 + 19*a*c^3*d^5)*e^3)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2
 + a*d)*e))*e^(-3)/(c^2*d^2), 1/384*(192*sqrt(a*d)*a^2*c^2*d^3*e^(11/2)*log((c^2*d^4*x^2 + 8*a*c*d^3*x*e + a^2
*x^2*e^4 + 8*a^2*d*x*e^3 - 4*(c*d^2*x + a*x*e^2 + 2*a*d*e)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt(a*
d)*e^(1/2) + 2*(3*a*c*d^2*x^2 + 4*a^2*d^2)*e^2)/x^2) - 3*(3*c^4*d^8 - 20*a*c^3*d^6*e^2 + 90*a^2*c^2*d^4*e^4 +
60*a^3*c*d^2*e^6 - 5*a^4*e^8)*sqrt(-c*d*e)*arctan(1/2*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*(2*c*d*x*e +
 c*d^2 + a*e^2)*sqrt(-c*d*e)/(c^2*d^3*x*e + a*c*d*x*e^3 + (c^2*d^2*x^2 + a*c*d^2)*e^2)) + 2*(6*c^4*d^6*x*e^2 -
 9*c^4*d^7*e + 118*a^2*c^2*d^2*x*e^6 + 15*a^3*c*d*e^7 + (136*a*c^3*d^3*x^2 + 337*a^2*c^2*d^3)*e^5 + 4*(12*c^4*
d^4*x^3 + 61*a*c^3*d^4*x)*e^4 + 3*(24*c^4*d^5*x^2 + 19*a*c^3*d^5)*e^3)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d
)*e))*e^(-3)/(c^2*d^2), 1/768*(768*sqrt(-a*d*e)*a^2*c^2*d^3*arctan(1/2*(c*d^2*x + a*x*e^2 + 2*a*d*e)*sqrt(c*d^
2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt(-a*d*e)/(a*c*d^3*x*e + a^2*d*x*e^3 + (a*c*d^2*x^2 + a^2*d^2)*e^2))*e^5
 - 3*(3*c^4*d^8 - 20*a*c^3*d^6*e^2 + 90*a^2*c^2*d^4*e^4 + 60*a^3*c*d^2*e^6 - 5*a^4*e^8)*sqrt(c*d)*e^(1/2)*log(
8*c^2*d^3*x*e + c^2*d^4 + 8*a*c*d*x*e^3 + a^2*e^4 - 4*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*(2*c*d*x*e +
 c*d^2 + a*e^2)*sqrt(c*d)*e^(1/2) + 2*(4*c^2*d^2*x^2 + 3*a*c*d^2)*e^2) + 4*(6*c^4*d^6*x*e^2 - 9*c^4*d^7*e + 11
8*a^2*c^2*d^2*x*e^6 + 15*a^3*c*d*e^7 + (136*a*c^3*d^3*x^2 + 337*a^2*c^2*d^3)*e^5 + 4*(12*c^4*d^4*x^3 + 61*a*c^
3*d^4*x)*e^4 + 3*(24*c^4*d^5*x^2 + 19*a*c^3*d^5)*e^3)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e))*e^(-3)/(c^2
*d^2), 1/384*(384*sqrt(-a*d*e)*a^2*c^2*d^3*arctan(1/2*(c*d^2*x + a*x*e^2 + 2*a*d*e)*sqrt(c*d^2*x + a*x*e^2 + (
c*d*x^2 + a*d)*e)*sqrt(-a*d*e)/(a*c*d^3*x*e + a^2*d*x*e^3 + (a*c*d^2*x^2 + a^2*d^2)*e^2))*e^5 - 3*(3*c^4*d^8 -
 20*a*c^3*d^6*e^2 + 90*a^2*c^2*d^4*e^4 + 60*a^3*c*d^2*e^6 - 5*a^4*e^8)*sqrt(-c*d*e)*arctan(1/2*sqrt(c*d^2*x +
a*x*e^2 + (c*d*x^2 + a*d)*e)*(2*c*d*x*e + c*d^2 + a*e^2)*sqrt(-c*d*e)/(c^2*d^3*x*e + a*c*d*x*e^3 + (c^2*d^2*x^
2 + a*c*d^2)*e^2)) + 2*(6*c^4*d^6*x*e^2 - 9*c^4*d^7*e + 118*a^2*c^2*d^2*x*e^6 + 15*a^3*c*d*e^7 + (136*a*c^3*d^
3*x^2 + 337*a^2*c^2*d^3)*e^5 + 4*(12*c^4*d^4*x^3 + 61*a*c^3*d^4*x)*e^4 + 3*(24*c^4*d^5*x^2 + 19*a*c^3*d^5)*e^3
)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e))*e^(-3)/(c^2*d^2)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {5}{2}}}{x \left (d + e x\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2)/x/(e*x+d),x)

[Out]

Integral(((d + e*x)*(a*e + c*d*x))**(5/2)/(x*(d + e*x)), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/x/(e*x+d),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:index.cc index_m operator + Error: Bad Argument Value

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{5/2}}{x\,\left (d+e\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2)/(x*(d + e*x)),x)

[Out]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2)/(x*(d + e*x)), x)

________________________________________________________________________________________